Towards an IDE to Support Programming as Problem-Solving

Nicholas Nelson Anita Sarma André van der Hoek
EECS EECS Department of Informatics
Oregon State University Oregon State University University of California, Irvine
nelsonni @oregonstate.edu anita.sarma@oregonstate.edu andre @ics.uci.edu
Abstract

Programming is inherently a problem-solving exercise: A programmer has to create an understanding
of the situation, externalize and contextualize thoughts and ideas, develop strategies on how to proceed
with the task, enact changes according to the most appropriate strategy, and reflect to learn from each
problem. Therefore, programming is clearly more than just code input, testing, and maintenance. Cur-
rent Integrated Development Environments (IDE), however, largely focus on the "writing code" parts of
programming. In this position paper, we revisit which activities and actions constitute programming,
and highlight six challenges to supporting these activities. We then briefly describe a new paradigm of
interacting with the IDE on which we are working to more directly support each of the six activities.

1. Programming as Problem-Solving

Programming is more than dealing with language syntax and semantics: it is inherently an exercise in
problem-solving that extends beyond the act of editing code in an Integrated Development Environment
(IDE). We are not the first to observe this. For instance, programming has been characterized as an iter-
ative process of refining mental representations of computational problems and solutions and expressing
those representations as code (Loksa et al., 2016). Other studies have found evidence for the facts that
programming requires gathering information from multiple sources (Sillito et al., 2008), includes creat-
ing mental models of program structures (Von Mayrhauser & Vans, 1995), and involves exploring and
evaluating many alternatives (Hartmann et al., 2008).

We surveyed the literature from the perspective of programming as problem-solving, with Table 1 sum-
marizing key activities that developers employ when programming. These activities can be partitioned
into six categories (Activities), with specific actions that represent in more detail how the high-level ac-
tivities manifest themselves in practice (Actions). Clearly, not every task involves all of these problem-
solving actions, and there is no linearity to the order in which they are employed. Sometimes an action
may not even be observable when it takes place solely in a programmer’s head. At the same time, liter-
ature has documented that all of these actions do occur and play an important role in how programmers
arrive at a solution to the programming problem at hand.

2. Challenges

We believe that it is necessary to fundamentally rethink IDEs, so that they seamlessly and intrinsically
support programming as problem solving. Supporting the full set of actions comprising problem-solving
in programming, however, involves numerous challenges that must be addressed. These challenges span
all six categories of activities, and even those activities that have traditionally been supported by IDEs
(A4) exhibit gaps when reviewed through the lens of problem-solving requirements.

1. How to support programmers’ formulation of problems and reflection on potential solutions?
Programmers do not just arrive at a solution out of nowhere. They need to first contextualize the
computational problem in terms of what they know and how they can progress towards a possible
solution. This involves exploration, articulation, and reflection on different alternatives, with these
actions being interleaved, sometimes even happening at the same time (e.g., developers are known
to reflect on a code solution while they articulate it) and typically encompassing several relatively
quick iterations. Often there is no single correct solution, and the best solution requires mixing
and matching elements from multiple alternative solutions.

Table 1 — Activities and Actions of Programming as Problem-Solving

Activities Actions
Identifying goals

Recalling prior knowledge

Al Understanding the situation Constructing models

Interpreting code artifacts

Filling knowledge gaps
Representing relevant information
A2 | Externalizing thoughts & ideas | Contextualizing information
Preserving contextual information
Generating alternatives

Articulating and refining alternatives
Understanding and assessing alternatives
Recombining aspects of alternatives
Translating strategies to actions

A4 Enacting change Tracking progress

Evaluating and assessing change
Feedback solicitation

Team work

A5 Collaborate Group think

Leverage group knowledge
Synchronization

Reflect on work

Preserve work

A3 Developing strategies

A6 Retrospect

2. How to provide programmers access to the relevant context in a problem space? Programming
solutions must exist in the context of the rest of the codebase and its related artifacts. Programmers
need to understand where a code snippet fits in a code base, what it calls out to, and what calls
into it (de Souza & Redmiles, 2008), the desired behaviors of the existing codeand the code to
be produced (e.g., computational speed, usability, features), organizational policies (e.g., licens-
ing, process standards, code style), and historical development (e.g., has a solution previously
been tried and rejected). Information that defines this context is not always readily available and,
instead, must be cobbled together from multiple different types of and sources of artifacts. A de-
veloper needs to know where these individual pieces of information reside and how to obtain just
those items that actually pertain to the problem at hand.

3. How to support different information processing style and workflow of programmers? Pro-
graming is a creating activity; no two programmers arrive at the same solution in the same way.
For example, female programmers tend to process information comprehensively, seeking a more
complete understanding of the problem before starting (Grigoreanu et al., 2012), whereas male
programmers are known to use a more heuristic (or selective) approach. As another example,
visuospatial reasoning is critical for abstract knowledge and inference, and is a core component
of how we view the world, but it has been observed that programmers bring their own personal
visuospatial reasoning and information processing style to evaluating and organizing artifacts,
solutions, and ideas (Tversky, 2005).

4. How to support programmers in relying on past experience? Problem-solving in programming
is not a one-off activity performed in isolation. Instead, programmers rely upon past experiences
with similar problems, knowledge gained from previous artifact interactions, and prior mental
models. The question arises of how this prior experience can be brought to bear, easily, when a
programmer faces a new situation. Apart from the programmer memorizing what they might have
done in the past and looking this up, current IDEs provide no support in this regard. The challenge
lies in how a new IDE can provide this kind of assistance.

5. How to enable collaboration between programmers across all artifacts involved in problem solv-
ing? As already highlighted, programmers contextualize their work with all sorts of different ar-

tifacts. Yet, current IDEs generally only allow sharing of the code being worked on. Successful
collaboration, however, requires sharing of all different artifacts so all participants have access
to the full context. Moreover, it requires ongoing programmers to know how their changes may
affect others, and who may be making changes that affect their own work (de Souza & Redmiles,
2008). Finally, they also need to understand the provenance of design decisions, and how and why
these decisions were made.

6. How to utilize different pieces of information and context to support the act of coding? Solu-
tions to computation problems must eventually be represented in code. Converting a conceptual
solution into actual lines of code is a non-linear activity (coding sessions start and stop), occurs
concurrently with other problem-solving activities, and is loosely organized (e.g., solutions are
partially implemented, abandoned, and recovered). Creating a simple, elegant software solution
hinges on complex, exploratory coding sessions, and the IDE must support this process fluidly.

Figure 1 — Cards-based User Interface of a Problem-Solving IDE

GitHub Tssue #3419 @ ® PDF View - 'Design’ o® ! — |
o — | (oo oeie @8) |
0 dales, facilisis ni 1
: i
|
rament 1 ; i
i ment 1 1
i i
| |
ol g T : :
O fm | = =1 I |
= | I |
| P——— “_- . | Lo
! = e s
o) U] | |
i
e
T
XX : _
— ; 2 Code Editor - Java 1.6~ @ 8| | Code Editor - Java 1.6 @ ® Code Editor - Java 1.6 =~ @ &
c ; %) — i
X) |
Email Message @ ® [|
|
From: (@ mark lonso l
To: {Ysal - i
Subject: core_X¥.suc Is unstabla | i - '
! i
! i
: L+ I
.
® ® OB

3. Toward A New IDE

We are in the initial stages of rethinking what an IDE might look like when it is designed from the
ground-up to support programming as problem solving. We particularly are exploring new metaphors
for how users would interact with the IDE (compared to the bento-box paradigm underneath today’s
IDEs), as rooted in the specific actions that we know programmers engage in and that must thus be
supported (conform Table 1). At present, the leading metaphor for our design is that of cards (as inspired
by code bubbles (Bragdon et al., 2010)): the IDE presents all information and enables the developer to
make changes through individual cards (see Figure 1). We believe cards, and the affordances that they
have, allows the envisioned IDE to better match what programmers actually do. We briefly highlight
five key elements in this regard together with which challenges (C#) we identified they would address.

e Cards serve as containers for different entities created during problem-solving sessions. They
span different artifacts (e.g., an open issue that is being worked on (Card 1), sketches that capture
designs (Card 2), or code snippets for reviewing and editing (Cards 3—6)). This diversity of cards
is crucial, as it unifies how programmers interact with different types of information that they need
in formulating problems and reflecting on them (C#1).

e Cards can be spatially arranged or grouped by programmers in the open canvas. Since cards can
be grouped in different ways, this supports different information processing styles and workflows
(C#3). For example, cards can be placed side-by-side (Cards 4-6) allowing for the exploration,
reflection, and mixing and matching of alternative solutions (C#I). Such comparative reasoning
has been shown to be critical for creating good solutions (Hartmann et al., 2008).

e Cards can be organized in groups or stacks, which allows programmers to organize the different
entities to create the context that is needed in the problem solving exercise (C#2). For example,
cards can be organized spatially (Cards 3-5) such that all relevant cards for a given context are
visible at the same time, or they can be stacked (Cards 7-9) to consolidate cards that are relevant,
but are not immediately needed.

e Card groupings (in groups or stacks) are type-agnostic, that is, cards of different types can be
combined together (Cards 7-9). Cards can also reflect programming elements at different points
in time (Cards 4, 5), allowing comparisons between different versions of the same artifact to
provide historical context to the current change (C#4).

e Cards are created within an individual programmer’s workspace, but are easily shared between
different programmers (e.g., Cards 3-5 are shared with two teammates: Mark and Sally). Further,
each card is dynamic, automatically updating itself to reflect the latest changes, which provides
an awareness of what other programmers are currently working on (C#5), thereby allowing devel-
opers to create some form of workspace awareness (Da Silva et al., 2006).

To date, we have merely engaged with the ’theoretical’ exploration of these ideas. Our next step is to
construct an actual prototype implementation to take them forward toward supporting programming as
problem solving.

4. References

Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S., Cheung, W., et al. (2010). Code Bubbles: A
working set-based interface for code understanding and maintenance. In CHI (pp. 2503-2512).

Da Silva, I. A., Chen, P. H., Van der Westhuizen, C., Ripley, R. M., & Van Der Hoek, A. (2006).
Lighthouse: coordination through emerging design. In OOPSLA-ETX (pp. 11-15).

de Souza, C. R., & Redmiles, D. F. (2008). An empirical study of software developers’ management of
dependencies and changes. In ICSE (pp. 241-250).

Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., Rector, K., & Kwan, I. (2012). End-user debug-
ging strategies: A sensemaking perspective. TOCHI, 19(1), 5.
Hartmann, B., Yu, L., Allison, A., Yang, Y., & Klemmer, S. R. (2008). Design as exploration: creating
interface alternatives through parallel authoring and runtime tuning. In UIST (pp. 91-100).
Loksa, D., Ko, A.J., Jernigan, W., Oleson, A., Mendez, C. J., & Burnett, M. M. (2016). Programming,
problem solving, and self-awareness: Effects of explicit guidance. In CHI (pp. 1449-1461).
Sillito, J., Murphy, G. C., & De Volder, K. (2008). Asking and answering questions during a program-
ming change task. 7SE, 34(4), 434-451.

Tversky, B. (2005). Visuospatial reasoning. The Cambridge Handbook of Thinking and Reasoning,
209-240.

Von Mayrhauser, A., & Vans, A. M. (1995). Program comprehension during software maintenance and
evolution. Computer, 28(8), 44-55.

