Cognition and Distributed Cognition in Software Engineering Research[WIP]

Marjahan Begum
Lecturer
Department of Computer Science
City University London
Marjahan.Begum @City.ac.uk

Abstract

The purpose of this paper is to conduct an exploratory literature review in the area of cognition and
distributed cognition within software engineering (SE) research. Over arching aims of this literature
review are to understand the how individual cognition and distributed cognition are discussed in software
engineering research. This is to support empirical studies on the role cognition (individual or team) plays
during software development process.

The finding suggest that most of the research to date is empirical but there is also some theoretical
research. The research focus has been on: program comprehension, design and review, distributed
cognition and how tools can reduce cognitive load for programmers. This analysis provides opportunities
for further research in terms of cognitive models and methodological insights.

1. Introduction

The purpose of this paper is to conduct an exploratory literature review in the area of cognition and
distributed cognition in software engineering research. Over arching aims of this literature review are
to understand the how individual cognition and distributed cognition are discussed in software engi-
neering research. This is to support empirical studies on the role cognition (individual or team) play
during software development process. Even though there are advances in technologies and in software
engineering processes, fundamentally individuals within teams will design and will continue to develop
software. This will continue to be so in a collaborative and in a distributed fashion. For the purpose
of this research an all encompassing definition of cognition is used here. It is higher order cognition
processes such as generating hypothesis and lower order cognitive processes such a recalling(Renumol,
Janakiram, & Jayaprakash, 2010). Cognitive processes are associated with the way information is pro-
cessed, retrieved and stored for later use. It is not the intention of this paper to make any claims about
a pure definition of cognition in the context of software engineering but rather to explore how the con-
cepts around cognition are discussed in the literature in the software engineering. To the best of the
researcher’s knowledge there is no comprehensive literature review on how cognition is discussed in
software engineering literature.

2. Methodology

A semi-structured and exploratory approach to literature review was done using inspiration from Snow-
balling technique(Wohlin, 2014). Such an exploratory literature study was also used in studies in soft-
ware engineering(Helgesson, Engstrom, Runeson, & Bjarnason, 2019).

It was semi-structured because key research databases, journals and conferences were identified. Each
of the databases was then searched separately.

2.1. Databases and Sources
Combinations of search strings were used that consisted of the following keywords or phrases: "abstrac-
tion", "awareness", "chunking", "cognitive", "cognition", "distributed cognition", "mental imagery",

non non

"reason/reasoning" , "inspection", "recognition"”, "sense making", and "tracing"

Combination of these search strings were applied in two major searches followed by some ’adhoc’
searches in the databases Scoupus, Science Direct, IEEE Xplore, ACM Digital Library specific journal
and conference avenues. Journals and conferences were identified from an established grounded theory

PPIG 2021 WWW.ppig.org

literature review(Stol, Ralph, & Fitzgerald, 2016). They are listed below.

* Information and Software Technology

* Journal of Systems and Software

* IEEE Transactions on Software Engineering

* Empirical Software Engineering Journal

» Software Process: Improvement and Practice

* Journal of Software: Evolution and Process

* Software Quality Journal

* ACM Trans. Software Engineering and Methodology

* Journal of Software Maintenance and Evolution: Research and Practice
* International Symposium on Empirical Software Engineering an Measurement
* International Conference on Software Engineering

* Journal IEEE transaction on Software Engineering

2.2. Inclusion and Exclusion Criteria
Their inclusion was confirmed by reading their titles and abstracts.

In order to narrow down the articles for an in depth study, inclusion and exclusion criteria were developed
iteratively by reading the abstracts of the papers and making sense of the research. The main criteria
were that followings:

* Peer reviewed conferences and journals
* Empirical software engineering

» Software engineers behaviour, team and social aspects

Peer-reviewed papers were chosen as they went through quality assurance with peers working in the
similar areas. Team and social aspects were important as software development is a team activity and
practice is always within a social and organisational structure. This resulted in 24 articles.

3. Results
24 papers were read in detail and were then reduced to only 13 research papers. These are presented in
this paper and briefly summariezed in Table 1.

Table 1 — Research related Cognition in Software Engineering

No. Study Brief Overview

1. (Cant, Jeffery, & This research makes the connections between software complexity and cogni-
Henderson-Sellers, tive complexity based on cognitive processes used by programmers. It pro-
1995) poses a cognitive model which describes cognitive processes during main-

taining, modifying, and extending, testing and understanding code. These are
chunking (code comprehension) and tracing (searching). It offers a hypothesis
driven by scanning the code with a combination of forward/backward tracing.
These two cognitive processes require syntactic and semantic knowledge. The
contribution of this research is modelling of complexity of programmers’ pro-

CESSES

PPIG 2021 WWW.ppig.org

(Arunachalam &
Sasso, 1996)

The study explores cognitive processes engaged in the program comprehen-
sion. The study introduces explanatory generation, confirmatory association
and explanation validity. It also includes cognitive processes related to design
documents such as pseudocode or flow charts or mapping to business domain.

3. (Zhuge, Ma, & Shi, This paper argues that software process is a special case of human problem
1997) solving and calls cognitive space. It presents a cognitive based the problem
solving framework. The framework includes: analogy, abstraction, knowledge

content, control strategies, top-down and bottom up.

4. (Shaft & Vessey, This study shows that top-down and bottom-up theories of program compre-
1998) hension due to differences in the knowledge of application domain and how

meta-cognition are used.

5. (Robillard, D’Astous, Investigates cognitive activities in software team work during a technical re-
Detienne, & Visser, view meeting. The activities were evenly distributed among hypothesising,
1998) evaluating, justifying and informing.

6. (Storey, Fracchia, & Provides a cognitive framework for a tool to aid exploration and comprehen-
Miiller, 1999) sion. The framework includes top-down, bottom up and integrated model. It

concludes that cognitive load needs to be considered in the design of tools.

7. (Herbsleb, 1999) Based on content analysis of conversation during nine domain analysis meet-
ings, the research looks at how metaphorical representations are used in do-
main analysis. The result shows that 70% data was metaphorical. For example
systems behaviour described as physical movement of objects.

8. (Dunsmore, Roper, & The research conducted an experiment with bottom up and as needed strategy

Wood, 2000) to identify defects but it is not conclusive about which approach is better.

9. (Karahasanovi¢, Explores strategies and difficulties when conducting a maintenance task of a
Levine, & Thomas, software system. The research found that there are two level of difficulties:
2007) development environment and difficulties with software development process

(mainly comprehension). In the research programmers were required to use
use systematic and as needed strategy.

10. (Ko, Deline, & Veno- The research shows how developers maintain awareness for their tasks. This
lia, 2007) was done through actively seeking it, through scheduled meetings and through

ad-hoc meetings and through collaborative tools

11. (Petre, 2010) The research examines the relationship between software visualization and ef-
fective software developers’ reasoning specifically during design and genera-
tion. It specifically discusses roles of mental imagery and external representa-
tion during design.

12. (Omoronyia, Fergu- Introduces a ‘Continuum of Relevance Index’ (CRI) model to help with build-
son, Roper, & Wood, ing awareness in distributed software development team in their collaborative
2009) space. The model tries to show only relevant/dependent tasks and required

artefacts for particular task in the software engineering process.

13. (Lavallee, Robillard, This is a mapping study in the area of cognition and software engineering. It

& Paul, 2013)

argues for team meta-cognition, team situation awareness and team problem
solving in software development process

Software engineering processes involve a number of processes such as program comprehension, debug-
ging, design and testing. These activities are carried out by software developers or engineers using cog-
nitive activities and knowledge (internal or distributed). Cognitive processes are higher level processes
as defined by Renumo et al (Renumol et al., 2010). Some examples of these processes are recognition,
imagery, comprehension, learning, reasoning, deduction, induction, decision making, problem solving,
explanation, analysis, synthesis, creation, analogy, planning, and quantification. This literature review

PPIG 2021

WWW.ppig.org

shows that most of research in SE discusses cognition and distributed cognition in the context of program
comprehension which occurs during maintenance, adding features, debugging or simply to understand
the program. This is corroborated by the finding of a research on program development which concluded
that programmers spent 70% of their time in program comprehension (Minelli, Mocci, & Lanza, 2015).
The general conclusion is that there are cognitive difficulties with such activities and there is a body of
research argues for better design of tools to support software engineers in these processes (Petre, 2010;
Storey et al., 1999). See Section 3.4.

3.1. Cognitive Processes in Software Engineering
Two opposing cognitive processes dominate in research related to program comprehension, top-down vs
bottom-up.

Top-down is the hypothesis driven understanding of the code by recognising its syntactic or semantic
structure which is followed by validating or invalidating the hypothesis (Cant et al., 1995; Shaft &
Vessey, 1998; Storey et al., 1999; Littman, Pinto, Letovsky, & Soloway, 1986; Arunachalam & Sasso,
1996). Hypothesis building involves reconstruction of knowledge or mental models held by the pro-
grammers. In the literature it is generally argued that the top-down approach is used when programmers
are working on familiar domains or technologies. The Top-down approach is also associated with tracing
of code and systematic strategy (Cant et al., 1995; Littman et al., 1986).

Bottom-up processes involve making inferences from small lines of code and then building to form
higher levels of abstraction (Arunachalam & Sasso, 1996)(Storey et al., 1999). This approach is associ-
ated with the situation where a code is new to the programmers and sometimes called chunking (Cant et
al., 1995). Bottom-up processes build the abstraction of knowledge while top down rebuilds the previ-
ously held knowledge. Top-down is often associated with experts and bottom up approach is associated
with novices (Burkhardt, JM., Détienne, F. & Wiedenbeck, 2002; Cant et al., 1995; Shaft & Vessey,
1998; Storey et al., 1999).

Another approach is called integrated or as-needed strategy in the context of program comprehension
and is often associated with opportunistic behaviour. Based on the task at hand and knowledge base, the
programmer decides which approach to use (Storey et al., 1999; Dunsmore et al., 2000).

Often programmers use patterns of activities and patterns of cognitive processes to achieve a goal, be
it program comprehension, design or problem solving. For example, during program comprehension
there is evidence of explanatory generation followed by confirmatory association and then again ex-
planatory generation(Arunachalam & Sasso, 1996). In the problem solving context, control strategies
are used to transform a problem from its initial state to a goal state using a combination of analogy
and abstraction(Zhuge et al., 1997). In an empirical setting of a technical review meeting, the team
distributed their activities among hypothesising, evaluating, justifying and informing (Robillard et al.,
1998).

It should be noted that all the research argues that no one model can explain the behaviour underlying
programming in a unified way.

3.2. Internal and External Representations

The cognitive processes described above interact with representation in the form of mental models or
patterns held by programmers based on their previous experience. Mental models are formed iteratively
through various levels of abstractions. The knowledge required is called syntactic or semantic knowledge
(Burkhardt, Detienne, & Wiedenbeck, 1998) . Mental models are progressively formed through using the
semantic knowledge which is language independent and can also be about the domain knowledge (Shaft
& Vessey, 1998). Syntactic knowledge is language dependent and is about the structural elements of the
program.

In the problem solving context, cognitive space consists of analogy and abstraction as illustrated above,
but it also consists of knowledge content (Zhuge et al., 1997). In this context knowledge appears to be
explicitly about concepts, relationships, rules, experiences and theory.

PPIG 2021 WWW.ppig.org

Mental imagery is another form of representation that has been studied (Petre, 2010). Mental imagery
takes many forms such as dancing symbols, auditory images, visual images, machine/artifacts with their
own minds, surfaces and landscapes. When these images are externalised they become focal points for
design discussions. Complementary research shows that during domain analysis, software engineer use
metaphorical representations 70% of the time (Herbsleb, 1999). Software engineers describes the be-

99 9 99 99

haviour of systems as physical movement of objects,(’go”, give”,’come back™) as perceptual processes

(’look™, ”’see”, ”search”) or in anthropomorphic terms of the system having beliefs and desire ("knows”,
“trying to do”).

3.3. Awareness and Distributed Cognition

In its simplest form, awareness is about knowing who, what, when, where and how. But in the litera-
ture there are four types of context awareness: informal awareness, group-structural awareness, social
awareness and work-space awareness (Omoronyia et al., 2009; Gutwin, Penner, & Schneider, 2004).
These types of awareness are important for enhancing the coordination and efficiency of teamwork. Re-
searchers have developed the Continuum of Relevance Index (CRI). They used it empirically to enhance
developers’ awareness about other developers and about tasks and artefacts that are most relevant in
their particular work contexts. Awareness is particularly crucial in distributed software development
(Omoronyia et al., 2009; Gutwin et al., 2004) where the traditional notion of knowledge being stored
in the software developer’s head does not entirely solve the modern challenges in software engineering.
An example of how awareness is maintained is through the use of text based communication channels
i.e version control systems like Git and email forums.

A discussion of the theory of distributed cognition is very relevant here. The theory can explain how soft-
ware developers need to consider systems outside the immediate context in terms of people, processes
and artifacts to solve modern software engineering challenges(Hollan, Hutchins, & Kirsh, 2000).

Distributed Cognition suggests that

* Cognitive processes may be distributed across the members of a social group;

* Cognitive processes may be distributed between internal and external (material or environmental)
structure; and

* Cognitive processes may be distributed through time in such a way that the products of earlier
events can transform the nature of later events.

In a mapping study of distributed cognition in software engineering, the research identified five major
concepts(Lavallee et al., 2013). Two of the relevant concepts here are community (team-meta cognition
and task awareness) and cognitive support tools to support task awareness. The community concept
resonates with the awareness concept illustrated at the beginning of this section(Omoronyia et al., 2009).
Cognitive support tools are to help with collaboration and communication in team contexts.

3.4. Tools to support software engineering

Due to the nature of software development, software engineers have to work with multiple artifacts and
at multiple levels of abstraction. This creates cognitive overhead and researchers have tried to address
these issues (Karahasanovic et al., 2007; Arunachalam & Sasso, 1996; Storey et al., 1999; Dunsmore
et al., 2000; Petre, 2010; Lavallee et al., 2013). Computer mediated knowledge collaboration tools
should address socio-technical challenges. Difficulties associated with the programming environment
can be reduced through the design of tools that reduce cognitive overheadsduring browsing, navigating,
and visualising of the software architecture(Storey et al., 1999; Karahasanovi¢ et al., 2007). Research
informed design of the tool is advocated so that top down, bottom up and integrated approaches to
software development are supported (Petre, 2010). Visualisation tools that support understanding of
software architecture and domain knowledge are a step in the right direction. Difficulties associated
with programming logic and testing procedures are addressed through specific tools for testing and

PPIG 2021 WWW.ppig.org

debugging(Karahasanovi¢ et al., 2007). It is often software engineers who develop their own task spe-
cific tools as available tools do not either reduce the cognitive load or do not support the development
process(Petre, 2010).

4. Discussion

This is work in progress research to help design empirical studies on cognitive processes used by devel-
opers and engineers during the software development process. By reviewing the literature it is intended
that, future empirical studies will have some basis for theoretical foundation (cognitive models explored
in previous literature) and types of methods used to study engineers and developers.

Should a study be designed to study individual cognition in software engineering and or from a dis-
tributed and collaborative perspectives?

If individual cognition is to be studied, perhaps in the design of the empirical work it is useful to know
when software developers debug or extend a software what kind of the knowledge they use during
chunking and tracing(Cant et al., 1995). So the question stands as to the type of syntactic and semantic
knowledge that they use? Where do they get this knowledge from (individual or distributed)? How do
they make use of the "project memory"? What tools do they use to help them with their tasks. If domain
knowledge is important where do they get it from. What are their difficulties and how do they overcome
these difficulties? What role does an individual’s knowledge and previous experiences play?

If team cognition and software engineering is to be studied how should the empirical study be designed?
What methods should one use and what analytical framework could be used?

More broadly is the question of cognition and software engineering an important research avenue to
explore? Would such a study have impact on SE practices and research?

The findings in this literature review provide some basis for the design of the empirical research to
answer the above questions. It provides basis for developing a framework for the empirical work and for
developing research tools such as observational framework, interview design (group and individual).

For example, for future empirical work, CRI(Omoronyia et al., 2009) and the workspace awareness
framework (Gutwin et al., 2004) could be used to frame observations of and interviews with software
engineers. Different cognitive models identified can be used to provide an initial theoretical founda-
tion to design interview protocols or even inform a coding scheme for analysing software development
activity.

It should be noted that this literature review is carried out to understand the current state of play in how
cognition is discussed in software engineering to help carried out empirical research in industrial context
in this area.

5. Conclusion and Limitation

The main conclusion that can be drawn is that in cognition and software engineering not much research
has been done beyond code comprehension, with limited research in modern software engineering envi-
ronment (Helgesson et al., 2019). Though there is established understanding that distributed cognition
is an appropriate framework to investigate software engineering practice there are limited studies in this
area.

This project does not claim to cover all the research in this area. The following literature have not be
searched

Global Software Engineering
* Open source knowledge sharing community
* Psychology of Programming

* Computer Supported Collaboration Learning

PPIG 2021 WWW.ppig.org

6. References

Arunachalam, V., & Sasso, W. (1996). Cognitive processes in program comprehension: An empirical
analysis in the context of software reengineering. Journal of Systems and Software, 34(3), 177-
189. doi: 10.1016/0164-1212(95)00074-7

Burkhardt, J. M., Detienne, F., & Wiedenbeck, S. (1998). Effect of object-oriented programming
expertise in several dimensions of comprehension strategies. Program Comprehension, Workshop
Proceedings(July), 82—89. doi: 10.1109/wpc.1998.693294

Burkhardt, JM., Détienne, F. & Wiedenbeck, S. E. S. E. (2002). Object-Oriented Program Comprehen-
sion: Effect of Expertise, Task and Phase. Empirical Software Engineering, 7, 115.

Cant, S. N., Jeffery, D. R., & Henderson-Sellers, B. (1995). A conceptual model of cognitive complexity
of elements of the programming process. Information and Software Technology, 37(7), 351-362.
doi: 10.1016/0950-5849(95)91491-H

Dunsmore, A., Roper, M., & Wood, M. (2000). Role of comprehension in software inspection. Journal
of Systems and Software, 52(2), 121-129. doi: 10.1016/S0164-1212(99)00138-7

Gutwin, C., Penner, R., & Schneider, K. (2004). Group awareness in distributed software development.
In Proceedings of the acm conference on computer supported cooperative work, cscw (pp. 72—
81). New York, New York, USA: ACM Press. Retrieved from http://portal.acm.org/
citation.cfm?doid=1031607.1031621 doi: 10.1145/1031607.1031621

Helgesson, D., Engstrom, E., Runeson, P., & Bjarnason, E. (2019). Cognitive load drivers in large
scale software development. Proceedings - 2019 IEEE/ACM 12th International Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE 2019, 91-94. doi: 10.1109/
CHASE.2019.00030

Herbsleb, J. D. (1999). Metaphorical representation in collaborative software engineering. Proceedings
of the International Joint Conference on Work Activities Coordination and Collaboration, WACC
1999, 117-126. doi: 10.1145/295665.295679

Hollan, J., Hutchins, E., & Kirsh, D. (2000, jun). Distributed Cognition: Toward a New Foundation
for Human-Computer Interaction Research. ACM Transactions on Computer-Human Interaction,
7(2), 174-196. Retrieved from http://dl.acm.org/doi/10.1145/353485.353487
doi: 10.1145/353485.353487

Karahasanovi¢, A., Levine, A. K., & Thomas, R. (2007). Comprehension strategies and difficulties
in maintaining object-oriented systems: An explorative study. Journal of Systems and Software,
80(9), 1541-1559. doi: 10.1016/j.jss.2006.10.041

Ko, A. J.,, Deline, R., & Venolia, G. (2007). Information N eeds in Collocated Software Dev elopment
Teams (Tech. Rep.).

Lavallee, M., Robillard, P., & Paul, S. (2013). Distributed Cognition in Software Engineering. eKNOW
2013, The Fifth ... (c), 57-62. Retrieved from http://www.thinkmind.org/index.php
?view=article{\&}articleid=eknow{_}2013{_}4{_}20{_}60013

Littman, D., Pinto, J., Letovsky, S., & Soloway, E. (1986). Mental models and software maintenance.
In In empirical studies of programmers (pp. 80-98). Ablex Pub. Corp.

Minelli, R., Mocci, A., & Lanza, M. (2015). I Know What You Did Last Summer - An Investigation of
How Developers Spend Their Time. IEEE International Conference on Program Comprehension,
2015-Augus, 25-35. doi: 10.1109/ICPC.2015.12

Omoronyia, 1., Ferguson, J., Roper, M., & Wood, M. (2009). Using developer activity data to enhance
awareness during collaborative software development. Computer Supported Cooperative Work,
18(5-6), 509-558. doi: 10.1007/s10606-009-9104-0

Petre, M. (2010). Mental imagery and software visualization in high-performance software development
teams. Journal of Visual Languages and Computing, 21(3), 171-183. Retrieved from http://
dx.doi.org/10.1016/3.3v1c.2009.11.001 doi: 10.1016/j.jvlc.2009.11.001

Renumol, V. G., Janakiram, D., & Jayaprakash, S. (2010). Identification of cognitive processes of effec-
tive and ineffective students during computer programming. ACM Transactions on Computing Ed-
ucation, 10(10). Retrieved from http://doi.acm.org/10.1145/1821996.1821998.

PPIG 2021 WWW.ppig.org

doi: 10.1145/1821996.1821998

Robillard, P. N., D’Astous, P., Detienne, F., & Visser, W. (1998). Measuring cognitive activities in
software engineering. Proceedings - International Conference on Software Engineering, 292—
300. doi: 10.1109/icse.1998.671342

Shaft, T. M., & Vessey, I. (1998, jun). The Relevance of Application Domain Knowledge: Characteriz-
ing the Computer Program Comprehension Process. Journal of Management Information Systems,
15(1), 51-78. Retrieved from https://www.tandfonline.com/doi/full/10.1080/
07421222.1998.11518196 doi: 10.1080/07421222.1998.11518196

Stol, K. J., Ralph, P., & Fitzgerald, B. (2016). Grounded theory in software engineering research: A
critical review and guidelines. Proceedings - International Conference on Software Engineering,
14-22-May-(Aug 2015), 120-131. doi: 10.1145/2884781.2884833

Storey, M. A., Fracchia, F. D., & Miiller, H. A. (1999). Cognitive design elements to support the
construction of a mental model during software exploration. Journal of Systems and Software,
44(3), 171-185. doi: 10.1016/S0164-1212(98)10055-9

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in
software engineering. ACM International Conference Proceeding Series. doi: 10.1145/2601248
2601268

Zhuge, H., Ma, J., & Shi, X. (1997). Abstraction and analogy in cognitive space: A software process
model. Information and Software Technology, 39(7), 463—468. doi: 10.1016/S0950-5849(96)
00008-0

PPIG 2021 WWW.ppig.org

